Burkholder-Gundy-Davis inequality in martingale Hardy spaces with variable exponent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Burkholder-Davis-Gundy Inequality for Enhanced Martingales

Multi-dimensional continuous local martingales, enhanced with their stochastic area process, give rise to geometric rough paths with a.s. finite homogenous p-variation, p > 2. Here we go one step further and establish quantitative bounds of the p-variation norm in the form of a BDG inequality. Our proofs are based on old ideas by Lépingle. We also discuss geodesic and piecewise linear approxima...

متن کامل

Applications of Pathwise Burkholder-davis-gundy Inequalities

In this paper, after generalizing the pathwise Burkholder-DavisGundy (BDG) inequalities from discrete time to cadlag semimartingales, we present several applications of the pathwise inequalities. In particular we show that they allow to extend the classical BDG inequalities (1) to the Bessel process of order α ≥ 1 (2) to the case of a random exponent p (3) to martingales stopped at a time τ whi...

متن کامل

Burkholder-davis-gundy Type Inequalities of the Itô Stochastic Integral with Respect to Lévy Noise on Banach Spaces

Let us assume that (S,S) is a metric space with Borel σ algebra S and η̃ is a time homogeneous compensated Poisson randommeasure defined on a filtered probability space (Ω;F ; (Ft)0≤t<∞;P) with intensity measure ν on S, to be specified later. Let us assume that 1 < p ≤ 2, E is a Banach space of martingale type p, see e.g. the Appendix of [7] for a definition. We consider in the following the Itô...

متن کامل

Burkholder-davis-gundy Type Inequalities of the Itô Stochastic Integral with Respect to Lévy Noise on Banach Spaces

Let us assume that (S,S) is a metric space with Borel σ algebra S and η̃ is a time homogeneous compensated Poisson random measure defined on a filtered probability space (Ω;F ; (Ft)0≤t<∞;P) with intensity measure ν on S, to be specified later. Let us assume that 1 < p ≤ 2, E is a Banach space of martingale type p, see e.g. the Appendix of [7] for a definition. We consider in the following the It...

متن کامل

Poincaré-type Inequality for Variable Exponent Spaces of Differential Forms

We prove both local and global Poincaré inequalities with the variable exponent for differential forms in the John domains and s L -averaging domains, which can be considered as generalizations of the existing versions of Poincaré inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Scientia

سال: 2018

ISSN: 0252-9602

DOI: 10.1016/s0252-9602(18)30805-1